

Plate-forme de co-simulation DACCOSIM 2016

Jean-Philippe TAVELLA Cherifa DAD Stéphane VIALLE EDF R&D département MIRE & RISEGrid, Clamart, France CentraleSupélec & UMI GT-CNRS 2958 & RISEGrid, Metz, France CentraleSupélec & UMI GT-CNRS 2958 & RISEGrid, Metz, France

- A French research institute dedicated to the Smart Grids
 - Launched by CentraleSupélec and Electricité de France in Dec. 2012
 - About 20 people (academic & industrial researchers, PhDs, post-docs)
 - For the study, modelling and simulation of Smart electric Grids

- A French research institute dedicated to the Smart Grids
 - Launched by CentraleSupélec and Electricité de France in Dec. 2012
 - About 20 people (academic & industrial researchers, PhDs, post-docs)
 - For the study, modelling and simulation of Smart electric Grids
- Some of the research topics with PhDs in progress
 - Operation of the power systems with lots of renewables
 - Stability and P=C balance with the help of the storage & load control
 - PLC use in the context of the smart metering
 - Harmonics contribution of an installation connected to the grid
 - Models and tools for a distributed cosimulation of the Smart Grids
 - Simulation of the information systems in Smart Grids

http://www.supelec.fr/342_p_38091/risegrid-en.html

Advanced M&S for the Smart Grids?

- Model the Smart Grids (Cyber-Physical complex System)
 - EDF R&D multi-disciplinary modeling
 - Modelica to unify the physics modeling thanks to internal business libraries (GridSysPro, BuildSysPro, PlantSysPro & ThermoSysPro)
 - Dymola as the main modeling tool for the Physics
 - IEC 61131-3, UML/SysML & Simulink models for the cyber part
- Simulate the Smart Grids
 - Dymola & Control Build for the FMUs export (FMI 2.0 for CoSimulation)
 - Next Papyrus with a Moka module to export FMUs
 - DACCOSIM as a distributed Master Algorithm for cosimulation with strongly coupled FMUs

Why DACCOSIM?

- A solution for simulating IP protected models
 - FMUs are "black boxes", only interfaces are known
- A solution for simulating large-scale systems
 - Time-continuous simulations in parallel possibly distributed over several cluster nodes
- A solution for simulating multi-physics systems
 - Generic interfacing between multi-physics components
- A (future) system of Russian dolls
 - A cluster of FMUs as a parallel FMU

What is DACCOSIM?

- A parallel & distributed Master Algorithm fully compliant with the FMI 2.0 for cosimulation standard providing
 - Co-initialization of the calculation scheme
 - Multi-threaded and distributed execution (deployment in parallel Python)
 - Variable time step methods
 - Adams-Bashforth multiple steps methods recently developed
- A Graphical User Interface making easier the construction of case studies
 - Calculation graph design, configuration and validation
 - Automatic case study execution
- A free distribution
 - Windows/Linux 32/64 bits under the AGPL license
 - One version per year, last one is DACCOSIM 2015, Oct. 2015

Parallel & Distributed Master Architecture

- Direct FMU-to-FMU data communication
 - Each FMU is embedded in a wrapper (C++ or Java)
 - Allows asynchronous communication in parallel with computation
 - FMUs can be on the same machine or on separate cluster nodes
 - FMUs on separate nodes: communication with TCP
 - FMUs on same node: shared queue or ØMQ communication with inproc

- A hierarchy of control masters to synchronize rollbacks
 - Under the constraint all FMUs must share the same step size

- **Common step size negotiation**
 - All FMUs share the same step size
 - The simulation timing is controlled by the hierarchy of masters
 - Two data synchronization methods: prudent & optimistic modes

- Several types of time step control strategies
 - Constant step size
 - Euler & Richardson adaptive step size (exploit fully FMI 2.0 interface)

- Generic master design that enables :
 - Either to *execute DACCOSIM as a standalone application*
 - Or to control DACCOSIM from an higher level middleware
 - Work in progress : DACCOSIM as a "super-FMU"

- State event detection
 - Provisional solution till next FMI 2.1 is released (hybrid cosimulation)

- Co-initialization
 - Automatic computation of the causality graph
 - Algebraic loops are detected using a Tarjan algorithm
 - Transformation of the causality graph into an acyclic oriented graph
 - Dissociate treatment of the algebraic chains and parallelized loops

DACCOSIM GUI: Making multi-simulation easy

Main GUI features

- Easy creation, configuration and validation of a calculation graph
 - FMU, operator and external connector blocks creation
 - Inter-block exchange definition
 - Sophisticated Copy-Paste function
 - Cluster resource association

Main GUI features

- Creation and visualization of the inter-block dependencies
 - Allows to set consistent system-wide initial values

- Direct generation of the DACCOSIM global and local master codes
- Direct execution of a local co-simulation

Use Case EnerBat 1 (2014)

- Simple thermal use-case with continuous-time model
 - Based on Modelica Standard Library, with the HeatTransfer package
 - Two separate thermal zones (rooms) with a wall in between
 - Boundary conditions
 - Outdoor temperature described by sine signal

Reference model in Dymola without FMUs

Equivalent model in DACCOSIM

Use Case EnerBat 3 (2015)

- A realistic test case
 - Based on BuildSysPro, EDF Modelica library for modeling energy in buildings
 - Multi-layer wall defined by encapsulated arrays of records with changeable size
 - Modelling of a residential multi-story building
 - Physical phenomena
 - Conduction
 - Convection
 - Long wave radiation (linearized)
 - Solar radiation
 - Boundary conditions
 - Meteorological data
 - Specific boundary condition for the crawl space and the top floor

Use Case EnerBat 3 (2015)

- Multi-scale thermal use case
 - Variable number of FMUs can be assembled
 - 5 levels of complexity (size/weight) for each FMU
- Model to FMU orientation
 - Acausal heat port to causal interfaces
 - Resistive node \rightarrow input **T** and output **Qflow**
 - Capacitive node \rightarrow output **T** and input **Qflow**

	Variable number		
	Walls	Zones	
Build 1	5	482	
Build 2	10	582	
Build 3	25	882	
Build 4	50	1382	
Build 5	500	10382	

5-stories building (17 FMUs)

19

DACCOSIM performance

EnerBat 1	Mean Computation Time (s)		
	Dymola	DACCOSIM	Speed up
Build 1	3.81	2.52	1.51

Dymola (monothreaded co-simulation) DACCOSIM (multithreaded co-simulation)

EnerBat 3	Mean Computation Time (s)		
	Dymola	DACCOSIM	Speed up
Build 1	7.4	6.39	1.158
Build 2	10.4	7.11	1.463
Build 3	21.93	9.19	2.386
Build 4	50.13	15.58	3.218
Build 5	19230.33	4535.17	4.240

Provided measurements are the average of 10 experiments

Processor: Intel Core i7-3840QM CPU @ 2.80 GHz, 4 physical cores, 8 logical cores

OS: Windows 7 64 bits RAM: 32.0 GB DDR3 932 MHz

DACCOSIM performance on PC cluster

DACCOSIM on a cluster of 6-core nodes (distributed & multithreaded co-simulation)

Enerbat-3 L5_05 : 11 FMUs Constant step size: 50 s Simulated time: 5 h Simulation time: 400 s \rightarrow 250 s (3 nodes)

Performance analysis ongoing:

- communication/computation time ?
- load balancing/FMU granularity ?
- \rightarrow optimization & speedup improvement

Next: « 100 heavy FMUs » scalability benchmark on PC cluster

Provided measurements are the average of 3 experiments **Cluster Node: 1x Intel Core i7 CPU920 @ 2.67 GHz, 6 physical cores,** 12 logical cores **Interconnect: Ethernet 10 Gbit/s** OS: Linux 64 bits RAM: 6.0 GB

What's next?

- DACCOSIM as a super FMU (recursive mode)
 - Final development planned early 2016
- Further optimizations of:
 - Inter-block exchanges
 - Model splitting and smart FMU deployment
 - Bisection search algorithm for event catch
- Update of the C++ version with a new C++ FMI API
 - Sezzet developed by SIANI as a clone of JavaFMI
- MPI implementation for PC clusters
 - mpiJava version early 2016, MPI C/C++ version further
- FMI 2.1 support (when published, not planned in 2016)

Demos

GUI Demo

Cluster Demo

Real time visu

http://daccosim.foundry.supelec.fr/