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Offshore wind market : general context

B The offshore wind market is
growing rapidly thanks to several
drivers :

B important wind resources

B |ess turbulence in offshore wind

® reduced use conflict than onshore
wind

B reduced visual impact

B The offshore wind market is looking
at more distant and deeper locations source
for which floating foundations are
required
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IFPEN'’s objective and approach

B The objective of IFPEN is to participate in
the development of floating offshore wind
turbines

" by proposing reliable solutions with fit for
purpose technologies to lower the cost of
floating offshore wind

B by offering a set of solutions for floater and
mooring technologies usable for any
standard offshore wind turbine
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Design and reliability issues of a floating wind
turbines

B Floating wind turbine design
¥ a key component is the anchoring system which
restrict the floating support motion.

¥ anchoring must avoid a failure of the anchoring lines
under extreme stress or/and fatigue during the lifespan
of the structure

B should have an optimal cost in order to be competitive

B involve the use of an expensive black-box simulator
(DeepLines™) modelling the complex system
B given control strategy (pitch actuators, generator)

B Subjected to random marine environment : wind, wave
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Stochastic model of wind/wave load :

B Subjected to random marine environment : wind, wave
B different time scales : short and long term distinction
¥ combined loading with different directions : numerous load cases to be
simulated

B Stochastic model of wind/wave load :

B spectral model : stationary Gaussian process, simulation via frequency
spectrum (Kaimal, Jonswap), number of short-term parameters depends on
simulation length( > 100 — 200)

® Karhunen-Loeéve : generally non-Gaussian, non-stationary process, distribution
of parameters needs to be estimated (site dependent), number of parameters
depends on desired variability
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A reliable and competitive design

B Design reliable against extremes
= Postdoctorate : A. Murangira (IFPEN)
= Failure probability estimation

B Design reliable against fatigue
= PhD Thesis : |. Aleksovska (IFPEN-P7)

B Design reliable against extremes and fatigue
= Premature
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Extreme case : an example of critical wind speed
process and response
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Design reliable against extremes

Find an optimal anchor design minimizing the costs under feasibility and time
dependent reliability to extreme chance constraints :

min C'(x4) = Axg,
Xd

h(Xd) S 0

SUbJGCt to{ P<Vt € [07 T]7g(taxd7x(')1XLT) < S) >1- p

B x,; the design parameters
h the feasibility constraints (good properties)
g a black-box expensive simulator modelling the structure responses

[ ]

]

B X(.) random processes modelling the environmental phenomenons
[ ]

X 7 random variables modelling the long term behaviour of the
environmental processes

s a limit threshold

p a required level (~ 107°)
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Challenges

B Complex phenomenon to model (environmental conditions)

= Simulation chain is CPU intensive (DeepLines™™)

B Probabilistic constraints

= Small failure probability to estimate (< 107°) : standard Monte-Carlo
impractical

= Non-linear black-box failure function g : makes the study of the
admissible area more difficult

= High dimensional problem involved in the probabilistic constraint
estimation : up to a few hundreds random variables for wind and wave time
process models

B (MINLP optimization problem)
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Reliability methodology.
IFPEN Postdoctorate : A. Murangira

B methods based on design point alone yield an estimate of failure
probability with reasonable computational effort

¥ but without confidence intervals
¥ accuracy highly dependent on non-linearities of mechanical output
B More accurate estimation via Monte Carlo methods (high computing
cost for low Py)
® Importance sampling (with/without design point information)
B Subset simulation,. ..
B may reduce computational load via metamodels (Kriging, SVM)

= AK-MCS (Kriging + standard Monte Carlo) [Echard et. al. 2011]
B Meta-IS (Kriging 4+ Importance sampling) [Dubourg, 2011], ...

u &Most metamodels fail in high dimension

New approach : combine dimension reduction methods, Kriging and importance
sampling
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IS failure probability estimator

B X c R?% input random vector with prior density ¢

B g proposal density s.t. 1,,)<oq(z) #0 = q(z) #0

B P; estimation through IS : 2V ~; ;4 @, i=1,...,n
pls — l zn: 1. . f](fﬁ(i)) (1)
Y =~ A TR

1y)<04(z) but

u Vara(ﬁ’}s) = 0 for the optimal importance density 7,,:(z) = >

intractable sampling
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Meta-IS : importance density

B Meta-IS [Dubourg, 2011] is based on the Kriging metamodel of the limit state
function g ~ GP(£f7, C)
B mean function £7(-)3 = linear regression model
® stationary covariance function C(z,1') = 02 Ro(z — 2')

my=[g(z'),...,9(z"")]" : observation vector and (6,0%) : GP parameters
the Kriging predictor at a new data point z is

Gz) ~ g(z) | y,0,0% ~ N(mg(z),0%(x))

where m;, and o, admit closed form expressions

B Obtain the quasi-optimal importance density G. by replacing 1 g (,)<o with the
probabilistic classification function

B P B _mé(x)
() = PolGla) < 0) = o (225 @
. m(x)q(x)
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Meta-IS : failure probability estimation

Meta—1IS __ q(il?) ~ - / ]lg(z)§0~
Py = /ﬂg(z)go 7(2) G (z)dz = Py () G (z)dz (4)

- Pf,eacorr (5)

B P =E4(m(X)) is the augmented failure probability, may be estimated by
standard Monte Carlo simulation

[ e— Eg*(ﬂjr((x;so) is a correction factor that can be estimated by using
MCMC sampler targeting .

Qeorr — 1 as Kriging model gets more accurate
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Issues of metamodel-based importance sampling

B Kriging can break down in high dimension

B MCMC sampling in high dimension is more complex, although some efficient
algorithms exist (modified Metropolis-Hastings [Au and Beck, 2001])

B |ikewise, the estimation of Py, = E,(m(X)) is easier but still
high-dimensional
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Sufficient dimension reduction (SDR)

B X :input (vector of short term parameters)
Y : output/response variable (limit state function output, failure domain
indicator)

B Objective : find linear subspace of X predictors that contains all information
on regression /classification of Y against X
B For B € R¥" S(B) = span(B) is a (sufficient) dimension reduction
subspace if
Y L X|BTX

or equivalently
Y =g¢.(BTX,e) el X
gr 1 unknown link function

B Estimation : Kernel dimension reduction (KDR) [Fukumizu, 2008] or
gradient-KDR [Fukumizu, 2014] almost no assumptions on distribution of X
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Inferring the dimension in KDR

SDR model Y = g,(BTX,e), e L X, BTB =1,

B |n standard KDR, r = rank(B) needs to be known in advance : we propose a
cross-validation procedure to infer r

B Kriging : If r << d, metamodel of link function g, obtainable in a
manageable dimension

B no information on ¢ = consider the simplified model
Y = g.(BTX) (6)

~

G, (z) : Kriging predictor in SDR subspace
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Meta-IS with sufficient dimension reduction

B We assume standard Gaussian inputs X

B Given a dimension reduction matrix B s.t. BT B = I, we suggest the
following quasi optimal IS density

_ m(BTz)q(x)

@ (z) = B (7)

m, : the probabilistic classification function of the Kriging metamodel in the
SDR subspace
me (z
m(2) =P | — G”( )
og (2)

B Metamodel update : let z,., € R" a point to be added to DoE.
B In the simplified SDR model, Y = g,(B” X), g, is unknown

" However Y = g(X), g being the known limit state fun.
® Hence, add 9ncw = 9((BT)* Znew) = gr(Znew) to DoE where (BT)#* BT = I,

LMCS 2015 - 24-11-2015



Meta-IS with sufficient dimension reduction :
analysis in Gaussian case

Let @.(z) = % and B, = [B, B, ] where B, orthonormal basis of
span(B)*

B Lemma
(i) The augmented failure probability Py, can be expressed as Py, = E(mw,(Z))
where Z is an r dimensional standard normal variable.

(i) Let Wo ~ N (0g—rx1, Lla—r), Wh ~ % where @, is the standard
r-dimensional normal pdf and W = [W,", W,'|T. Then X=B;"Wis

distributed according to G.(z) .

B Conclusion : estimation of Py . is possible by sampling in R". For the
estimation of aopr, sampling X ~ @, only requires MCMC sampling in R”
(instead of R?) and straightforward standard Gaussian generation in R4~"
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The case of non-Gaussian inputs

B The reliability problem maybe reformulated in the Gaussian standard space U
through Nataf transformation T for example : U = T(X), U ~ N(0, 1),

Py =P(g(T71(U)) £0)

B quasi-optimal density

_ o m(BTT N (u))pa(u)
3 (u) = Pr. 4

B MCMC sampling now in full dimension R?, more complex but possible
through modified Metropolis-Hastings [Au and Beck, 2001]
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Academic example

limit state function g(z) = 78 — Zle X =30 (Xi 4 Xin1)?

® input X = (X1,...,X,), d =50, X; i.id.
lognormal with mean 1, std 0.2

= g(x) =78 —a" X —[|CTX]?,
a=(1---1)T, C : rank 3 matrix =

span([a, C]) is DR subspace (dim 4)

FIGURE : SDR dimension inference

by CV

Method FORM Monte Carlo IS-FORM MetalS MetalS-DR

N 306 1.5 x 10° 5306 6551 2339
Py 458 x107°  1.84x107* 187 x107* 1.84x10"* 1.82x10~*
c.o.v. - 6.0x107%  44x1072  5x 102 5x 1072
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Failure probability of a WT submitted to wind load

Case study :

B Stationary conditions : mean wind speed/st.dev. Ujg = 11.5 m/s

Failure : Y > 0.4, Y : Tower top displacement (m)

Preliminary multiple design point search using SQA with different starting
points

Implementation of standard IS

Implementation of Meta-IS with SDR with estimated sufficient dimension
r=2

Implementation of subset simulation (SS)

LMCS 2015 - 24-11-2015



Metamodel refinement

kriging mean iter. 0
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FIGURE : Kriging predictor
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Metamodel refinement

kriging mean iter. 20

kriging standard dev. iter 20

FIGURE : Kriging predictor
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Metamodel refinement
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FIGURE : Kriging predictor
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Metamodel refinement

kriging mean iter. 43

FIGURE : Kriging predictor
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Simulation results

Py C.l # G calls Py Qleorr
Multi-FORM || 3.78 x 10~5%* N/A 4657 N/A N/A
IS 2.68 x 107> | [2.30,3.05] x 107° | 84657 N/A N/A
Meta-IS-SDR || 2.34 x 107> | [2.07,2.61] x 1075 | 10645 | 3.25x 1075 | 0.7198
SS 2.73 x 1075 | [1.26,4.20] x 1075 | 57000 N/A N/A

TABLE : Failure probability estimation :

* . based on main design point
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Conclusions and perspectives

Meta-IS-SDR provides convenient dimension reduction framework for
reliability analysis

What if the inputs in the physical space aren't Gaussian?
¥ Dimension reduction in the physical space by subspace projection makes more
sense in the physical space (e.g. if there are irrelevant inputs)
® Could try SDR in transformed space U but lesser guarantee of validity of SDR
model since transformed variables mix inputs

We still need to assess the long term failure probability/incorporate wave
elevation model

We have carried out preliminary sensitivity analysis study to identify relevant
inputs
® in SDR, dimension reduction subspace not necessarily interpretable
B Screening can be performed by using dependence measures (distance
correlation, maximum mean discrepancy, etc.),. ..

B ..., but these measures usually require a sample from ¢(X | g(X) < 0)
® may be possible to target ¢(X | g(X) < 0) using proposal density from
Meta-IS-SDR 7
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