

Simulations et Modélisations fiabilistes de la tenue en fatigue des pièces mécaniques traitées superficiellement par voie mécanique : cas du grenaillage de précontrainte contrôlé et du choc laser

Par Raouf FATHALLAH

Professeur à l'Ecole Nationale d'Ingénieurs de Sousse - Tunisie Responsable du groupe Fatigue au LGM ENI Monastir

Jeudi 7 avril 2011 - EDF - Chatou (78) - France

Procédé du grenaillage de précontrainte

Principe : projection de billes dures à des vitesses, relativement, élevées sur les surfaces des pièces métalliques.

<u>Effets favorables:</u> (i) Consolidation des couches superficielles & (ii) genèse d'un profil de contraintes résiduelles de compression,

Objectifs: amélioration de la résistance à la fatigue polycyclique et à la corrosion sous contraintes des pièces traitées,

<u>Applications:</u> automobile, aéronautique, aérospatial, naval, transmissions mécaniques, ponts, assemblages soudés, pétrochimie, ..

Procédé du Choc Laser

K. Ding et al , 2006

<u>Principe:</u> Le choc laser est un traitement de surface utilisant la pression générée par les plasmas induits par un laser impulsionnel (régime nanoseconde, densité de puissance 2-10 GW/cm2).

<u>Effets favorables:</u> Génération d'un profil de contraintes résiduelles de compression (4x plus que le GP en profondeur).

Objectifs: Amélioration de la résistance à la fatigue polycyclique et à la corrosion sous contraintes des pièces mécaniques,

Applications: Aéronautique, Centrale nucléaire, Militaire, etc.

Objectif et approche globale du projet

Objectif du projet de recherche:

- développement d'une méthode complète de dimensionnement à la fatigue des pièces traitées.
- optimisation des paramètres des deux procédés

Modifications des propriétés des surfaces par le grenaillage de précontrainte

Effet d'ordre mécanique:

Profil des contraintes résiduelles

Effet sur la fatigue:

Retardement de la phase d'amorçage (effet faible)

Retardement de la phase de propagation des fissures (efficace)

éventuellement risque d'amorçage en sous-couches si la plaque est mince.

Effet d'ordre métallurgique:

Durcissement ou Adoucissement Autres effets métallurgiques possibles.

Effet sur la fatigue:

Cas du durcissement: retardement de la phase d'amorçage (effet important)

Effet contraire dans le cas d'un adoucissement.

D'après thèse Hakimi, 1987

Modifications des propriétés des surfaces grenaillées

Effet d'ordre micro- géométrique:

Le grenaillage de précontrainte contrôlé induit une modification de l'état de surface initial.

Effet sur la fatigue:

Si l'état initial est favorable: risque de dégrader l'état de surface et dégradation de la limite d'endurance de la pièce traitée.

Si l'état initial est moins favorable & la taille de bille est convenablement choisie: l'état de surface peut être amélioré

Effet sur l'intégrité de la surface:

Endommagement superficiel

Effet sur la fatigue:

Ces défauts sont des sites potentiels d'amorçage des fissures de fatigue.

Défauts d'intégrité de la surface: écaillage, replis de métal, microfissures, ...

Modifications des propriétés des surfaces traitées par Choc Laser

Effet mécanique - Génération d'un profil de contraintes résiduelles de compression. Déformation plastique →Faible orquiecoad Revêtement LASER protecteur Mise en traction **Contraintes** résiduelles 1- Pendant l'impulsion laser 2- Après l'impulsion laser O. -200. S11(MPa) 400 -600 -800 0.0 0.5 1.0 1.5 Epaisseur (en µm)

Effet métallurgique

- Les effets métallurgiques se manifestent uniquement dans le cas de non usage de la couche thermo protectrice.

- Effet faible, augmentation de la densité des dislocations, durcissement faible de l'ordre de 10%.

Effet sur la rugosité Pas d'effet tribologique notable

Modifications des propriétés des surfaces traitées par Choc Laser

Effet sur l'endommagement

-Endommagement surfacique faible et concentré au centre du spot ne causant pas la détérioration de la pièce. -L'endommagement interne est nul.

Effet sur la tenue à la fatigue polycyclique

- Retarde la propagation des fissures

- Limite les micro concentrations des contraintes

-Améliore les limites d'endurance en fatigue polycyclique

Dane et al. [1997] ont montré une augmentation de **40 à 120% des limites d'endurance en fatigue** pour l'alliage de Titane.

- La durée de vie augmente entre 10 et 25 fois. Cadre de mes travaux de thèse:

Modélisation du procédé par la méthode simplifiée de Zarka.

Projet A: Développement de l'outil **PGG//SUGSS**

Version D1-13

La conception (UML)

Le langage de développement (orienté objet: C++)

Metal Improvement Company

Projet A: Simulation du procédé du grenaillage de précontrainte par la méthode des Éléments Finis

Objectifs:

- Permettre une meilleure analyse des chocs des billes (prise en compte de l'effet de la dureté de la bille),
- Prendre en compte d'autres paramètres: effet du taux de recouvrement, la nature du comportement du matériau traité,
- Prévoir <u>les défauts des irrégularités micro</u> <u>géométriques</u>,

✓ Prévoir des défauts d'endommagement superficiels

Projet A: Simulation du procédé du grenaillage de précontrainte par la méthode des Éléments Finis

Simulation des chocs simultanés et répétés

Projet A: Simulation du procédé du grenaillage de précontrainte par la méthode des Éléments Finis

Résultats de la modélisation sur le Waspaloy

Défaut géométrique de 2ème ordre W_t

Projet A: Simulation du procédé du grenaillage par choc laser par la méthode des Éléments Finis

Technique d'optimisation des paramètres du traitement par Choc Laser

Flow chart of LSP process optimization.

0.0435+ 0.0083 P_{max} + 0.0102 FWHM + 0.0038 P_{max}² + 0.0002 FWHM² + 0.0014 P_{max} FWHM **The Depth of Compressive Residual Stress**

 $DCRS(mm) = 0.0435 + 0.0083P_{max} + 0.0102FWHM + 0.0038P_{max}^{2} + 0.0002FWHM^{2} + 0.0014P_{max}FWHM$

Second order response surface (a) and contour plots (b) of two variables (FWHM and Pmax) for the depth under compressive stress

The Maximum compressive Stress

Méthodologie

Critère de fatigue multiaxiale de Crossland

Défini pour **N** cycles et à une probabilité **p**

Critère de fatigue pour les couches grenaillées

Analyse multicouches

$$I_{Peen} \quad z = \frac{\sigma_{eq}^{shot peening}(z) - \beta^{shot peening} z}{\beta^{shot peening} z} x100$$

20

Si, I_{Peen} z < 0 $\forall z$; alors il y a résistance à la fatigue polycyclique. Si, $I_{P_{een}} z \ge 0$ pour qq. z, il y a amorçage, pour z^c tel que, $I_{P_{een}} z^c$ est max

Application: essais de fatigue

Constatations

Le phénomène de fatigue est caractérisé par un aspect probabiliste très significatif

Courbe de Wöhler probabilisée

Constatations

Les conditions des surfaces sont caractérisées par un aspect probabiliste très important !

Contraintes résiduelles Largeurs de cordes État des surfaces traitées Défauts d'intégrité des surfaces etc. Défauts au voisinages des surfaces

Objectifs

Prévoir la fiabilité de la tenue à la fatigue multiaxiale polycyclique des pièces grenaillées ou non, en tenant en compte des dispersions:

(i) dues au matériau,
(ii) dues au chargement appliqué
(iii) dues aux conditions des surfaces.

Un grand avantage ! Éviter l'utilisation « aveugle » des coefficients de sécurité et de mieux maîtriser la fiabilité !

Développement de critères de fatigue probabilisés

Calcul de la fiabilité de la tenue en fatigue polycylique

Développement de critères de fatigue probabilisés

Application sur un acier dur soumis à une flexion, torsion alternées en phase

Données: $t_{-1} = 196.2$ MPa; COVt-1=1% ; $f_{-1} = 313.9$ MPa ; COVf-1=1%

 $\sigma a = 160$ MPa; COV $\sigma a = 2\%$; $\tau a = 160$ MPa; COV $\tau a = 2\%$; Nombre de tirage= 10^4

Développement de critères de fatigue probabilisés

Prise en compte des conditions de surfaces

-28

Diagramme de Fatigue probabilisé: pour une sollicitation donnée et un matériau donné

Probabilistic Crossland Diagram

Applications aux cas grenaillées et soudées grenaillées

Analyse des facteurs de sensibilité

 \Box L'effet de K_t et de σ^a sur l'indice de fiabilité est important.

Application aux cas des matériaux à défauts

Critère de fatigue adapté au cas des matériaux à défauts

Méthodologie adaptée pour le cas des matériaux à défauts

Modélisation géométrique des défauts de surface

Calcul des coordonnées de point de chargement par la technique de surfaces de réponse

Calcul de la fiabilité

Validation de l'approche

Projets en cours

Suspension et organes de freinage.

Merci pour votre aimable attention

