

Reliability Analysis and Robust Design Using MATLAB® Products

Stuart Kozola, Technical Marketing Ascension Vizinho-Coutry, Application Engineering Group

© 2008 The MathWorks, Inc.

LMCS 2008 Journée nationale pour la modélisation et la simulation 0D/1D 17th April 2008

Agenda

- Overview of reliability analysis and robust design
- Overview of MATLAB®
- Demonstration
- Summary of products shown
- Additional resources
- Question and answer

Benefits of Reliability Analysis and Robust Design

- Gain more knowledge about design
 - Understand failure rates / mechanisms
 - Sensitivity to changes in design parameters
 - Capture variation in design process and operation
- Better designs
 - Improved performance
 - Reduced variability
 - Improved quality
- Reduce development cost/effort
 - Fewer prototypes
 - Faster design iterations
 - Shorter development cycle

MATLAB&SIMULINK®

What is a Reliable and Robust Design?

Engineering Design Workflow

Design process can be performed:

- Manually (trial-and-error or iteratively)
- Automatically using optimization techniques

F(X) = Goal or min/max F(x) By changing X Subject to Design Requirements

Optimization benefits include:

- Finding better (optimal) designs
- Speeding up design evaluation
- Reducing labor/effort
- Finding non-intuitive designs

MATLAB Provides the Foundation for Engineering Analyses

MATLAB[®] The leading environment for technical computing

- Customizable
- Numeric computation
- Data analysis and visualization
- The *de facto* industry-standard, high-level programming language for algorithm development
- Toolboxes for statistics, optimization, symbolic math, signal and image processing, and other areas
- Foundation of the MathWorks product family

Demo: Automotive Suspension System Design

		W .		venicle Suspension model	
Alexand constant (□10) (L6 3) (□10) (L6 3) (□10) (L6 3) (□10) (L6 3) (□10) (L6 1)	للا المعدمات العام المعامل العامل العام ال		Bump Height Start Bump Height End	L _r CofG Suspension Model Copyright 1990-2007 The MathWorks Inc.	thetadotdat angular accleration Zdotdot verticle acceleration
	QK Gancel Help époly	1	Ready	130%	jode45

- Task: To design the suspension system for a new luxury car model
- Solution Approach:

Design Optimization – Traditional Approach

Optimal

Design

Design Optimization – Reliable and Robust Design Approach

Optimization Toolbox[™]

- Graphical user interface and command line functions for:
 - Linear and nonlinear programming
 - Quadratic programming
 - Nonlinear least squares and nonlinear equations
 - Multi-objective optimization
 - Binary integer programming
- Customizable algorithm options
- Standard and large-scale algorithms
- Output diagnostics

MATLAB & SIMULINK

- 0 ×

>>

Our example function mycost = myCostFcn(x,simParms) %% Extract suspension variables (called by Simulink Model) kf = x(1); cf = x(2);kr = x(3); cr = x(4);Optimization Tool struct2var(simParms); File Help Problem Setup and Results Ontions %% Run Simulink Model - Stopping criteria Solver fmincon - Constrained nonlinear minimizatio simTime = [0 8];Max iterations: • Use default: 400 sim('mldemo_suspnfast.mdl',simTime); % returns Algorithm: Medium scale C Specify: Problem Use default: 100*numberOfVariables Max function evaluations: %% Compute total acceleration * Objective function: @mvCostEcn C Specify: rf = 0.5*Lf;% location of front • Derivatives: Approximated by solver rr = 0.9*Lri% location of rear ₢ Use default Start point: ×0 C Specify: Constraints: totalAccel = (Zdotdot + rf * thetadotdot).^2 + C Use default (Zdotdot - rr * thetadotdot).^2; Linear inequalities: br. Aeg: Aeg beg: beg Linear equalities: C Specify: Upper: ub %% Return a single (scalar) value Bounds: Lower: X tolerance: • Use default: 1.00e-06 mvcost = sum(totalAccel); Nonlinear constraint function: @mynonlcon C Specify: Derivatives: Approximated by solver * Eunction tolerance: C Use default: 1.00e-06 Run solver and view results function [c,ceq] = mynonlcon(x,simParms) G Specify: 1e-8 Start Pause Nonlinear constraint tolerance: 💿 Use default: 1.00e-06 %% Extract suspension variables Current iteration: 16 <u>⊂</u>lear Results C Specify: kf = x(1); cf = x(2);Euction value check kr = x(3); cr = x(4);Optimization running. E User-supplied derivatives struct2var(simParms); Optimization terminated. Objective function value: 5.8061752883950355 F Approximated derivatives Optimization terminated: first-order optimality measure less Algorithm settings %% Define desired damping ration range and maximum constraint violation is less than options.TolCc 🗄 Multiobjective problem settings cupper = 0.5;% upper limit for dampin 🗄 Inner iteration stopping criteria clower = 0.3i% lower limit for dampin 4 Plot functions Current point Function count 🔽 Function value %% Define mass distribution on tires Final point: Mf = Mb*Lr/(Lf+Lr)/2;Norm of residuals Max constraint Current step 2 3 4 13,333.333 1,710.472 10.000 1.282.854 Mr = Mb*Lf/(Lf+Lr)/2;First order optimality Custom function: % Inequality constraints c <= 0</pre> E Output function c = [sqrt(kf/Mf)/(2*pi)-2;...% fn < E Display to command window • % fn sqrt(kr/Mr)/(2*pi)-2;...cf/(2*sqrt(kf*Mf))-cupper;... % damping ratio for front clower-cf/(2*sqrt(xkf*Mf));... cr/(2*sqrt(kr*Mf))-cupper;... % damping ratio for rear clower-cr/(2*sqrt(kr*Mf))]; % Equality constraints ceq = 0

11

MATLAB® SIMULINK®

Genetic Algorithm and Direct Search Toolbox™

Graphical user interface and command line functions for:

📣 The MathWorks

- Genetic algorithm solver
 - Single objective
 - Multi-objective with Pareto front
- Direct search solver
- Simulated annealing solver
- Useful for problems not easily addressed with Optimization Toolbox[™]:
 - Discontinuous
 - Highly nonlinear
 - Stochastic
 - Discrete or custom data types
 - Undefined derivatives

Statistics Toolbox

Statistics Toolbox provides interactive and command line tools for:

- Data collection and management
- Descriptive statistics
- Multivariate statistics
- Probability distribution fitting and modeling
- Hypothesis testing
- Analysis of variance/covariance
- Linear and nonlinear modeling
- Visualization
- Statistical Process Control
- Design of Experiments

Simulink® for Modeling and Simulation

- Block-diagram environment for modeling, simulating, and analyzing dynamic systems
- Add-on tools extend functionality
 - Application specific (e.g. Simulink[®]) Control Design, Signal Processing **Blockset**)
 - Physical modeling (e.g. SimMechanics, SimPowerSystems, SimHydraulics)
 - And more ...

MThe MathWorks

- Simulink specific optimization tools
 - Simulink Parameter Estimation
 - Simulink Response Optimization

Summary

- Models are not perfect and operate under uncertainty
- Accounting for uncertainty in upfront design process improves design performance and quality
- MATLAB®, Statistics, and Optimization products provide tools needed for reliability analysis and robust design
 - Capture and model uncertainty
 - Find optimal and robust design

MathWorks

MATLAB[®] SIMULINK[®]

Links to Digest Articles of Interest for Reliable/Robust Design

Designing for Reliability and **Robustness**

- Improving an Engine Cooling Fan **Using Design for Six Sigma Techniques**

 Using Statistics to Analyze **Uncertainty in System Models**

MATLAB® SIMULINK®

Contact Information

Ascension Vizinho-Coutry

- avizinho@mathworks.fr
- Tél: 01 41 14 88 30

Christophe Bouveur

- Christophe.Bouveur@mathworks.fr
- Tél: 01 41 14 87 79

Loic Noury

- Loic.Noury@mathworks.fr
- Tél: 01 41 14 87 85

Questions?

© 2008 The MathWorks, Inc.

